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Universitat de Barcelona,

Mart́ı i Franquès, 1, E-08028, Barcelona, Spain

E-mail: fbigazzi@ulb.ac.be, cotrone@itf.fys.kuleuven.be,

javier.mas@usc.es, aparedes@ffn.ub.es, alfonso@fpaxp1.usc.es,

tarrio@fpaxp1.usc.es

Abstract: We present the string dual to finite temperature SU(Nc) N = 4 SYM coupled

to massless fundamental matter introduced by Nf D7 branes, with Abelian flavor symme-

try. The analytic solution includes the backreaction of the flavors up to second order in

the parameter that weighs the internal flavor loops, ǫh = (λhNf )/(8π
2Nc), λh being the ’t

Hooft coupling at the temperature of the dual Quark-Gluon Plasma. We study the thermo-

dynamics of the system and its departure from conformality, which is a second order effect.

We then analyze the energy loss of partons moving through the plasma, finding that the

fundamental degrees of freedom enhance the jet quenching. The whole setup is generalized

to D3-D7 systems with D3-branes placed at the tip of a generic singular Calabi-Yau cone

over a five-dimensional Sasaki-Einstein manifold. We finally provide the equations for the

inclusion of massive flavors in the N = 4 SYM plasma.
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1 Introduction

The “fireballs” experimentally produced at RHIC and the ones that will be produced at the

LHC contain a non-zero fraction of degrees of freedom in the fundamental representation [1]:

they are truly Quark-Gluon Plasmas rather than just Gluon Plasmas. While holographic

methods provide interesting tools to analyze these systems, they have mainly been con-

cerned with plasmas without flavors in fundamental representations, or have treated the lat-

ter in the quenched approximation.1 The simplest and best studied example is the plasma

of N = 4 SYM which, unexpectedly, has proven to be not very different from the QCD one.

This paper is concerned with the study of flavor effects in the planar, strongly coupled,

SU(Nc) N = 4 SYM plasma beyond the quenched approximation. A solution is presented

in section 2, dual to N = 4 SYM coupled to Nf ≫ 1 massless flavors. The latter are

1Exceptions to this statement can be found in [2–4].
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introduced by means of D7-branes in the gravity background. The branes are homoge-

neously smeared over the transverse directions of the geometry and so the flavor symmetry

group is a product of Abelian factors [3, 5].2 The construction is immediately extended to

any D3-D7 setup with Nc D3-branes at the tip of Calabi-Yau cones over Sasaki-Einstein

manifolds. In all the cases the zero temperature gauge theories are taken to preserve N = 1

supersymmetry in 4d.

The solution can be given in closed analytic form up to second order in ǫh, which is

essentially λhNf/Nc (precise definitions will be given below), where λh is the ’t Hooft cou-

pling at the temperature of the plasma. The validity of the approach requires ǫh to be small

(see section 2.4), which is a common feature of D3-D7 systems. Actually in the particular

example that we work out in the present paper, realistic inputs yield values of ǫh ∼ 0.24

(see section 4.1.1 below). Therefore, keeping O(ǫ2h) is already accurate up to the level of a

few percent, the third and higher order corrections to the solution being tiny. On the other

hand, it is important to keep the ǫ2h terms since, as we will see, this is the order at which

conformality breaking (at the quantum level) affects the thermodynamical observables.

The gauge theories we focus on, in fact, are conformal in the unflavored case and, once

we couple them with dynamical flavors, have a UV Landau pole. The latter is mapped to

the blowing up of the dilaton and UV pathologies in the gravity solution at a finite energy

scale [7, 8]. In order to make meaningful physical statements, we will take the usual point

of view of field theory: if the IR scale in which we are interested is far below the Landau

pole scale, it is possible to make well-defined predictions for the IR physics in terms of

IR quantities. An eventual UV completion affects the results at most in powers of ΛIR
ΛUV

(ΛIR,UV being the IR and UV energy scales).

The first plasma property we study in section 3 is the thermodynamics. Up to first

order in λhNf/Nc our results for the thermodynamic quantities (entropy, energy, free en-

ergy, heat capacity, speed of sound) confirm the probe computations in [9]. The second

order results provide new insights into the plasma. In particular, we verify the breaking

of conformality in the thermodynamic observables at second order, such as the departure

of the square of the speed of sound from the value 1/3. Since we neglect higher deriva-

tive corrections to our gravity solutions, the usual relation η/s = 1/4π holds trivially [10],

giving automatically the value of the shear viscosity.

An interesting result is provided by the study of the energy loss of partons in the

plasma in section 4. Using the standard procedures [12–16] we find that the energy loss

is enhanced by the fundamental fields. In particular, the holographic value of the jet

quenching parameter is shifted to higher values with respect to the unflavored plasma,

approaching the experimental window.

We finally start considering the inclusion of massive flavors, whose treatment is more

challenging. We are able to provide in section 5 the equations of motion for the system,

but we leave their study for future work. A summary of the results is presented in section 6

and technical details of calculations are relegated to three appendices.

2D3-D7 solutions at zero temperature, where the D7’s are localized rather than smeared have been

discussed in [6].
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2 The D3-D7 plasma solution with massless flavors

In [7], the gravity duals to a class of N = 1 4d quiver gauge theories coupled to massless

fundamental flavor fields, were found. The gauge theories describe the low energy dynamics

at the intersection of Nc “color” D3-branes and Nf “flavor” D7-branes. The dual super-

gravity solutions account for the combined backreaction of both stacks of D-branes and

thus allow an exploration of the non perturbative dynamics of the corresponding gauge

theories beyond the quenched approximation.

In the setup the D3-branes are placed at the tip of a Calabi-Yau cone over a 5d Sasaki-

Einstein manifold X5. In the absence of flavor branes they source a background whose

near horizon limit is AdS5 ×X5: the dual gauge theories are superconformal quivers. Just

to pick two well known examples: when X5 = S5 the CY manifold is just the 6d Euclidean

space and the dual field theory is N = 4 SYM; when X5 = T 1,1 the CY manifold is the

singular conifold and the dual theory is the Klebanov-Witten quiver [17]. Since this will

be used in the following let us remember that the metric of a 5d Sasaki-Einstein manifold

can be written as a U(1) fibration over a 4d Kähler-Einstein manifold:

ds2X5
= ds2KE + (dτ +AKE)2 , (2.1)

where τ is the fiber coordinate and AKE is the connection one-form whose curvature is

related to the Kähler form of the KE base: dAKE = 2JKE. For X5 = S5 the KE base is

CP 2 and for X5 = T 1,1 it is S2 × S2.

The D7-branes introduce fundamental matter in the dual field theories. They are

extended along the radial direction of the background and wrap a submanifold X3 of X5.

They are also homogeneously smeared over the transverse space [3, 5].3 The smeared

distribution is taken in such a way that the isometries of the fibered Kähler-Einstein space

are kept unbroken, and allows to write an ansatz where all the unknown functions just

depend on a single radial coordinate. The D7-brane embedding is taken such that, when

the temperature vanishes, the whole D3-D7 system preserves N = 1 supersymmetry in

4d.4 As a general feature of D3-D7 setups, the dilaton runs and blows up at a certain

radial distance, corresponding to a UV Landau pole in the dual gauge theory [7].

In the following, we are going to study the finite temperature behavior of these D3-D7

gauge theories. As a first step, we are going to find the non-extremal generalizations of the

supergravity solutions found in [7].

2.1 Ansatz and equations of motion

We look for solutions of type IIB supergravity coupled to Nf D7-brane sources. The action

of the system reads:

S = SIIB + Sfl , (2.2)

3See [7, 8, 18–23] for other studies of this kind of construction in the zero temperature case.
4When X5 = S5, a single stack of parallel D7-branes preserves N = 2. However, the smeared distribu-

tions considered in [7] and in the present paper just preserve N = 1. See appendix C for more details on

the D7-brane embeddings for this case.
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where the active terms of SIIB are (we will work in Einstein frame throughout the paper):

SIIB =
1

2κ2
10

∫

d10x
√−g10

[

R− 1

2
∂MΦ∂MΦ − 1

2
e2ΦF 2

(1) −
1

2

1

5!
F 2

(5)

]

, (2.3)

whereas the action for the D7 flavor branes takes the usual DBI+WZ form:

Sfl = −T7

∑

Nf

(
∫

d8x eΦ
√−g8 −

∫

C8

)

. (2.4)

The gravitational constant and D7-brane tension are, in terms of string parameters:

1

2κ2
10

=
T7

gs
=

1

(2π)7g2
sα

′4 . (2.5)

The metric ansatz we want to focus on is:

ds210 = h−
1
2
[

−b dt2 + d~x2
3

]

+ h
1
2
[

b S8F 2dσ2 + S2ds2KE + F 2(dτ +AKE)2
]

. (2.6)

The functions h, b, S, F (as well as the dilaton Φ) depend on the radial variable σ; b = 1

in the extremal (i.e. zero-temperature) case. In our conventions, S,F have dimensions of

length, b, h are dimensionless and σ has dimension length−4.

The non-trivial RR field strengths are:

F(5) = Qc (1 + ∗)ε(X5) , F(1) = Qf (dτ +AKE) , (dF(1) = 2Qf JKE) , (2.7)

where ε(X5) is the volume element of the internal space and Qc, Qf are proportional to

the number of colors and flavors:

Nc =
Qc V ol(X5)

(2π)4gs α′2 , Nf =
4Qf V ol(X5)

V ol(X3)gs
. (2.8)

The first relation is just the usual quantization condition of the D3-brane charge, while

the derivation of the second is detailed in appendix A.5 V ol(X3) is the volume of the

submanifold (X3 ⊂ X5) wrapped by any D7-brane.6 In the X5 = S5 case, V ol(X3) = 2π2.

The fact that the flavors are massless is encoded in the independence of F(1) on σ.

See [7, 20] for discussions on this issue and section 5 for the case of massive flavors when

X5 = S5.

All the functions we need to compute depend on a single coordinate σ, and it is possible

to describe the system in terms of a one-dimensional effective action. By directly inserting

the ansatz in the action (2.2), we find:

Seff =
V ol(X5)V1,3

2κ2
10

∫

dσ

(

−1

2

(∂σh)
2

h2
+ 12

(∂σS)2

S2
+ 8

(∂σF )(∂σS)

F S
− 1

2
(∂σΦ)2+

5We have defined Nf as the number of flavor branes. The precise way in which they introduce funda-

mental degrees of freedom and how they couple to adjoints and bifundamentals depends on the particular

theory. For instance, in the X5 = S5 case, there are 2Nf supermultiplets (in N = 1 language) but the

flavor symmetry is just U(1)Nf , due to the coupling between adjoint and fundamental superfields in the

superpotential.
6Notice that, since the different D7-branes take different positions in the internal space due to the

smearing, the particular submanifold X3 spanned by each brane is different. However, since the family of

relevant X3’s are related by the internal isometries, they all have the same volume and thus V ol(X3) is a

well defined quantity.
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+
(∂σb)

2b

(

(∂σh)

h
+ 8

(∂σS)

S
+ 2

(∂σF )

F

)

+

+ 24b F 2 S6 − 4b F 4 S4 − 1

2
Q2
c

b

h2
− 1

2
Q2
fe

2Φb S8 − 4Qfe
Φ b S6 F 2

)

. (2.9)

In (2.9) V1,3 denotes the (infinite) integral over the Minkowski coordinates. The second

derivatives coming from the Ricci scalar have been integrated by parts and, as is customary,

only the angular part of F(5) is inserted in the F 2
(5) term (otherwise the Qc would not enter

the effective action since, on-shell, F 2
(5) = 0 due to the self-duality condition). Notice also

that the WZ term does not enter (2.9) because it does not depend on the metric or the

dilaton; its effect has been taken into account via the expression for F(1) (we refer the

reader to [7] for extensive explanations). The term proportional to Qf comes from the DBI

contribution in (2.4); more detailed considerations regarding this last term are relegated

to appendix A. The equations of motion stemming from the effective action (2.9) are:

∂2
σ(log b) = 0 ,

∂2
σ(log h) = −Q2

c

b

h2
,

∂2
σ(log S) = −2bF 4S4 + 6bF 2S6 −Qf e

Φb F 2 S6 ,

∂2
σ(logF ) = 4b F 4S4 −

Q2
f

2
e2Φb S8 ,

∂2
σΦ = Q2

f e
2Φ b S8 + 4Qf b e

ΦS6F 2 . (2.10)

It is straightforward to check that these equations solve the full set of Einstein equations

provided the following “zero-energy” constraint is also satisfied:

0 = −1

2

(∂σh)
2

h2
+ 12

(∂σS)2

S2
+ 8

(∂σF )(∂σS)

F S
− 1

2
(∂σΦ)2 +

+
(∂σb)

2b

(

(∂σh)

h
+ 8

(∂σS)

S
+ 2

(∂σF )

F

)

+

−24b F 2 S6 + 4b F 4 S4 +
1

2
Q2
c

b

h2
+

1

2
Q2
fe

2Φb S8 + 4Qfe
Φ b S6 F 2 . (2.11)

This constraint can be thought of as the σσ component of the Einstein equations or, alter-

natively, as the Gauss law from the gauge fixing of gσσ in the ansatz (2.6). By differentiat-

ing (2.11) and using (2.10), one finds an identity, which shows that the system is not overde-

termined. The equations are valid for any Kähler-Einstein base space since only the prop-

erties RKE
ab = 6gKE

ab and dAKE = 2JKE are needed when checking the Einstein equations.

2.2 The supersymmetric solution: second order expansion

The supersymmetric (zero temperature) solution of (2.10), (2.11) was found in [7]. It

corresponds to having b = 1 and it is dual to N = 1 quiver gauge theories with flavors. In

the present notation, the BPS first order equations read:

∂σh = −Qc, ∂σS = S3F 2,

– 5 –
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∂σΦ = Qf S
4eΦ, ∂σF = S4F

(

3 − 2
F 2

S2
− Qf

2
eΦ
)

. (2.12)

It can readily be shown that these equations, together with b = 1, are sufficient conditions

for (2.10), (2.11) to hold. In a different, dimensionless, radial coordinate dρ = S4dσ, the

equations for S,F,Φ can be explicitly integrated, giving [7]:

S = α′ 1
2 eρ

(

1 + ǫ∗

(

1

6
+ ρ∗ − ρ

))
1
6

,

F = α′ 1
2 eρ (1 + ǫ∗(ρ∗ − ρ))

1
2

(

1 + ǫ∗

(

1

6
+ ρ∗ − ρ

))− 1
3

,

Φ = Φ∗ − log(1 + ǫ∗ (ρ∗ − ρ)) ,

dh

dρ
= −Qc α′−2 e−4ρ

(

1 + ǫ∗

(

1

6
+ ρ∗ − ρ

))− 2
3

, (2.13)

where for later convenience a scale ρ∗ has been introduced and Φ∗ is the value of the dilaton

at that scale. We have also inserted powers of α′ (which enters as an integration constant

of (2.12)) in order to give appropriate dimensions. Notice that the solution is defined for

ρ < ρLP where ρLP = ρ∗ + ǫ−1
∗ is the point at which the dilaton blows up. We have chosen

to keep the differential equation for h, even if it can be solved in terms of incomplete

gamma-functions. The parameter ǫ∗ = Qf e
Φ∗ has been introduced. It has to be small

for the solution to be valid in a large energy range (see section 2.4) and it will be used as

an expansion parameter. Defining λ∗ as the ’t Hooft coupling7 at the ρ∗ scale, ǫ∗ can be

expressed in terms of physical quantities by using (2.8) as:

ǫ∗ =
V ol(X3)

16π V ol(X5)
λ∗
Nf

Nc
, (2.14)

and, in particular, ǫ∗ (X5=S5) = 1
8π2λ∗

Nf

Nc
.

We have set to 0 the integration constant c1 of [7] for the sake of IR regularity. Even if

for c1 = 0, this backreacted geometry still presents an IR singularity (much milder than in

the c1 6= 0 cases), it is useful to think of the c1 = 0 solution as the massless limit of a family

of IR regular solutions where the IR singularity is removed by non-zero quark masses [20].

When we go to finite temperature, the singularity will be hidden behind an event horizon.

In comparing to the unflavored and to the finite temperature solutions, it will be use-

ful to employ an r coordinate which we define by requiring that h takes the simple and

familiar form:

h =
R4

r4
, R4 ≡ 1

4
Qc =

1

4
Nc

(2π)4gsα
′2

V ol(X5)
. (2.15)

7 For the (flavored) N = 4 SU(Nc) theory, the gauge coupling is g2
YM = 4π gse

Φ (note the choice for the

numerical prefactor, which sometimes is taken to be 2π), and thus λ∗ = 4π gsNce
Φ∗ . For quiver theories

that correspond to different X5 geometries, the gauge groups are of the form SU(Nc)
n. Let us generalize

a relation from the orbifold constructions
Pn

i
4πg−2

Y M,i = (gse
Φ)−1 [17, 24], and consider all the gauge

couplings gY M,i to be equal. Then 4π gsNce
Φ, strictly speaking, gives the ’t Hooft coupling at each node

of the quiver, divided by n. With an abuse of language we will simply refer to it as the ’t Hooft coupling.

– 6 –
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We can expand dh
dρ from (2.13) and integrate order by order in ǫ∗. Since (2.15) gives h ex-

plicitly in terms of r, this yields an expression for r(ρ). Let us fix the additive integration

constant in h such that r(ρ∗) ≡ r∗ =
√
α′eρ∗ .8 Then:

r = α′ 1
2 eρ
[

1 +
ǫ∗
72

(

e4ρ−4ρ∗ − 1 + 12(ρ∗ − ρ)
)

+
5ǫ2∗

10368

(

e8ρ−8ρ∗ + 6e4ρ−4ρ∗(3 + 4(ρ∗ − ρ))

−(19 − 24(ρ∗ − ρ) + 144(ρ∗ − ρ)2)
)

+O(ǫ3∗)

]

. (2.16)

We can obtain now F (r), S(r),Φ(r) as expansions up to second order:

F0 = r

[

1 − ǫ∗
24

(

1 +
1

3

r4

r4∗

)

+
ǫ2∗

1152

(

17 − 94

9

r4

r4∗
+

5

9

r8

r8∗
− 48 log

(

r

r∗

))

+O(ǫ3∗)

]

,

S0 = r

[

1 +
ǫ∗
24

(

1 − 1

3

r4

r4∗

)

+
ǫ2∗

1152

(

9 − 106

9

r4

r4∗
+

5

9

r8

r8∗
+ 48 log

(

r

r∗

))

+O(ǫ3∗)

]

,

Φ0 = Φ∗ + ǫ∗ log
r

r∗
+
ǫ2∗
72

(

1 − r4

r4∗
+ 12 log

r

r∗
+ 36 log2 r

r∗

)

+O(ǫ3∗) , (2.17)

where the subscript 0 means that the solutions are dual to the D3-D7 theories at T = 0.

2.3 The non-extremal solutions

We now look for non-extremal solutions of (2.10), (2.11), which would provide for a dual

description to the finite temperature regime of our D3-D7 gauge theories. Such solutions

are required to be regular at the horizon and to tend to the supersymmetric (T = 0)

ones at energy scales much higher than the temperature. Concretely, we will require that

the geometries coincide with the T = 0 solutions in the extremal limit and that F, S,Φ

coincide with those in (2.17) when evaluated at r = r∗. This uniquely fixes the order by

order expansion of the non-supersymmetric solution.

The equations for h and b in (2.10) are decoupled from the rest and are solved, in

terms of an integration constant rh, by:

b = e4r
4
h
σ , h =

Qc
4r4h

(1 − e4r
4
h
σ) . (2.18)

where σ ∈ (−∞, 0). We define the r coordinate such that the expression for h (2.15) still

holds:

e4r
4
h
σ = 1 − r4h

r4
. (2.19)

The extremal limit corresponds to sending the horizon radius rh to zero. The metric reads:

ds210 = − r2

R2

(

1 − r4h
r4

)

dt2 +
r2

R2
d~x2

3 +
R2S̃8F̃ 2

r2
dr2

(1 − r4
h

r4
)

+R2S̃2ds2KE +R2F̃ 2(dτ +AKE)2 ,

(2.20)

8This is different from the choice of integration constant adopted in [8], which required h to vanish at the

point where the dilaton diverges. However, the difference between both integration constants is a quantity

suppressed as e
−

4

ǫ∗ and its influence on the IR physics is of this order and therefore negligible with respect

to the terms kept in the Taylor expansion.

– 7 –
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where:

S̃ ≡ S

r
, F̃ ≡ F

r
. (2.21)

We still have to solve for F̃ , S̃,Φ. A straightforward computation from (2.10), (2.11) leads

to the differential equations for F̃ , S̃,Φ, in terms of the coordinate r. It is easy to check

that the AdS5 black hole solution F̃ = S̃ = 1, Φ = const is recovered in the flavorless limit

ǫ∗ = 0. Its deformation, expanded up to second order in ǫ∗ reads:9

F̃ = 1 − ǫ∗
24

(

1 +
2r4 − r4h
6r4∗ − 3r4h

)

+
ǫ2∗

1152

(

17 − 94

9

2r4 − r4h
2r4∗ − r4h

+
5

9

(2r4 − r4h)
2

(2r4∗ − r4h)
2
+

−8

9

r8h(r
4
∗ − r4)

(2r4∗ − r4h)
3
− 48 log

(

r

r∗

))

+O(ǫ3∗) ,

S̃ = 1 +
ǫ∗
24

(

1 − 2r4 − r4h
6r4∗ − 3r4h

)

+
ǫ2∗

1152

(

9 − 106

9

2r4 − r4h
2r4∗ − r4h

+
5

9

(2r4 − r4h)
2

(2r4∗ − r4h)
2
+

−8

9

r8h(r
4
∗ − r4)

(2r4∗ − r4h)
3

+ 48 log

(

r

r∗

))

+O(ǫ3∗) ,

Φ = Φ∗ + ǫ∗ log
r

r∗
+
ǫ2∗
72

(

1 − 2r4 − r4h
2r4∗ − r4h

+ 12 log
r

r∗
+ 36 log2 r

r∗
+

+
9

2

(

Li2

(

1 − r4h
r4

)

− Li2

(

1 − r4h
r4∗

)))

+O(ǫ3∗) , (2.22)

where Li2(u) ≡ ∑∞
n=1

un

n2 is a polylogarithmic function. The expressions in (2.20), (2.22)

are the central results of this paper. Together with (2.7) they provide the full perturbative

solution. We are now going to discuss their regime of validity and, in the following sections,

their implications for the physics of the dual flavored plasmas.

2.4 Hierarchy of scales and regime of validity

In order for the set-up to be physically meaningful, there must exist a hierarchy of scales.

In terms of the r radial coordinate:10

rh ≪ r∗ ≪ ra < rLP . (2.23)

The quantity rh sets the scale of the plasma temperature rh
R2 ∼ ΛIR ∼ T , which is the scale

at which we want to analyze the physics. The point rLP is where the dilaton diverges,

signaling a Landau pole in the dual theory. However, as discussed in [8], the string solution

starts presenting pathologies at a lower scale, which we denote by ra. At this scale, which

is fairly close to rLP, the holographic a-function is singular and the utility of the solution

for r > ra is doubtful. Finally, r∗ sets an (arbitrary) UV cutoff scale r∗
R2 ∼ ΛUV. The

9This procedure is analogous to the one adopted in [25].
10Being strictly precise, there should be an extra scale 0 < rq ≪ rh proportional to the quark masses

if one wants to avoid the IR singularity of the zero temperature solution. The solutions presented in this

section can be seen as the leading ones in
rq

rh
∼ mq

T
. If one wants to use the results for phenomenological

estimates of the QCD plasma, this should be a good approximation since mu, md ≪ T . Section 5 deals

with the backreaction of massive quarks.
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solution (2.22) will only be used for r < r∗. In a Wilsonian sense of a renormalization

group flow, the UV details should not affect the IR physical predictions. This feature is

reflected in that physical quantities do not depend (up to suppressed contributions) on r∗
or functions evaluated at that point, but only on IR parameters. Even if the precise value

of r∗ is arbitrary, we have to make sure that it is possible to choose it such that it is well

above the IR scale (so that the UV completion only has negligible effects on the IR physics)

and well below the pathological ra, rLP scales (so that the solution we use is meaningful

and the expansions do not break down). To this we turn now.

Let us start by computing the hierarchy between r∗ and rLP. Since at r∗ we can

approximate the solution by the supersymmetric one, we can read the position of the Lan-

dau pole from (2.13). If we insert the approximate relation between radial coordinates

r ≈
√
α′eρ, we find:

r∗
rLP

≈ e−
1
ǫ∗ ≪ 1 , (2.24)

as long as ǫ∗ ≪ 1.

Moreover, one has to make sure that the Taylor expansions (2.22) are valid in the

region rh < r < r∗. This of course requires ǫ∗ ≪ 1, but also that ǫ∗

∣

∣

∣
log rh

r∗

∣

∣

∣
≪ 1 (notice

that the absolute value of the logarithm can be big because rh ≪ r∗). This means that
rh
r∗

≫ e−
1
ǫ∗ . On the other hand, when we compute physical quantities in the upcoming

sections, we always neglect quantities suppressed as powers of rh
r∗

∼ T
ΛUV

.11 This is the

order of magnitude of the corrections due to the eventual UV completion of the theory

at r∗. One has to make sure that the corrections in ǫ∗ we are keeping are much larger

than the neglected ones, namely ǫ∗ ≫ rh
r∗

. In summary, we have the following hierarchy of

parameters (in the following, in order to avoid overly messy expressions, we insert the value

of ǫ∗ for the X5 = S5 case, remembering that for a generic X5, its value is given by (2.14)):

e−
1
ǫ∗ ∼ e

− 8π2 Nc
λ∗ Nf ≪ rh

r∗
∼ T

ΛUV
≪ ǫ∗ ∼

λ∗Nf

8π2Nc
≪ 1 . (2.25)

As long as ǫ∗ ∼ λ∗Nf

8π2Nc
≪ 1, there always exists a range of r∗ such that this inequality is

satisfied. Since we will focus on the IR physics of the plasmas, at the scale set by their

temperature, the actual physical constraint on the parameters will be λh

8π2

Nf

Nc
≪ 1 , which

we have written in terms of the coupling at the scale of the horizon, λh = λ∗(1 + O(ǫ∗)),

see section 3 below.

On top of this, we have to make sure that the SUGRA+DBI+WZ action we are

using is valid. As usual, the suppression of closed string loops requires Nc ≫ 1 whereas

the suppression of α′-corrections is guaranteed by λh ≫ 1. We have written the D7

worldvolume contribution to the action as a sum of Nf single brane contributions. This

is justified if the typical energy of a string connecting two different branes is large (in α′

units). Since the branes are distributed on a space whose size is controlled by R ∼ λ
1
4
h

√
α′,

we again need λh ≫ 1. The smearing approximation will be good if the distribution of

11For the thermodynamical quantities, we always neglect terms suppressed, at least, as
“

rh

r∗

”4

, while for

the jet quenching parameter the neglected terms are of order rh

r∗
.
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D7-branes on the transverse space is dense, i.e. Nf ≫ 1. The discussion up to now is

summarized in the following validity regime:

Nc ≫ 1 , λh ≫ 1 , Nf ≫ 1 , ǫh =
λh
8π2

Nf

Nc
≪ 1 . (2.26)

Finally, we want to find the regime of parameters in which the flavor corrections are not only

valid but are also the leading ones. With this aim, we ought to demand that α′-corrections

to the supergravity action (which typically scale as λ
− 3

2
h due to first string corrections of

the type α′3R4) are smaller than the flavor ones, controlled by ǫh, namely:12

λ
− 3

2
h ≪ ǫh . (2.27)

Demanding that corrections to the D7-branes contributions (for instance curvature correc-

tions to the worldvolume action itself or corrections produced by possible modifications

of the brane embeddings due to curvature corrections to the background metric) are sub-

leading does not impose any further restriction. The reason is that their contribution is

typically of order ǫhλ
−c
h for some c > 0 which is always subleading with respect to ǫh as

long as (2.26) is satisfied.

Let us conclude this section with some comments on the stability of our perturbative

non-extremal solutions. A possible way to check for the latter is to consider worldvolume

fluctuations of a D7-brane in the setup. If, as in our cases, the brane corresponds to massless

flavors, the related quasi-normal modes on the unflavored background all have frequencies

with a negative imaginary part of the order of the temperature, signaling stability [9, 26].

This result cannot be changed in the flavored case when a perturbative expansion in ǫh is

done. Thus, in our regime of approximations, stability with respect to those fluctuations

is guaranteed.

3 Thermodynamics of the solution

In the previous section we have found a family of perturbative non extremal solutions which

are regular at the horizon. They are dual to finite temperature flavored deformations of

conformal theories, including N = 4 SYM. The solution (2.22) is written in terms of the

parameters ǫ∗, r∗, which are defined at the UV scale. As already stressed, the physical

quantities must be expressed in terms of IR parameters. We thus define:

ǫh =
λh V ol(X3)

16π V ol(X5)

Nf

Nc
, (3.1)

where the subscript h means that the quantities are evaluated at the horizon. Thus, λh is

naturally identified with the coupling at the scale of the plasma temperature. We there-

fore have:

ǫh = ǫ∗
eΦh

eΦ∗

= ǫ∗ + ǫ2∗ log
rh
r∗

+O(ǫ3∗) . (3.2)

12Notice that if one wants the second order flavor corrections that will be computed to also dominate

over the curvature ones, the more restrictive condition λ
−

3

2

h ≪ ǫ2h is needed.
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It is important to notice that, if we tune the temperature while keeping the UV parameters

fixed (namely, we change the temperature without changing the theory), then ǫh depends

on the temperature. Since, as we will see below, rh is proportional to the temperature (at

leading order), we have:

dǫh
dT

=
ǫ2h
T

+O(ǫ3h) , (3.3)

and T (dλh/dT ) = ǫhλh at leading order. These relations reflect the running of the gauge

coupling induced by the dynamical flavors.

We now ask how the BH temperature and entropy density are related to the parameters

of the solution. Let us start by computing the temperature requiring regularity of the

euclideanized metric, by identifying the temperature with the inverse of the period of the

euclideanized time. A simple computation yields:

T =
2rh

2πR2S̃4
hF̃h

=
rh
πR2

[

1 − 1

8
ǫh −

13

384
ǫ2h +O(ǫ3h)

]

, (3.4)

where we have inserted the values of F̃ , S̃ at the horizon, which can be read from (2.22)

(neglecting terms suppressed as powers of
r4
h

r4
∗

):

F̃h = 1 − ǫh
24

+
17

1152
ǫ2h +O(ǫ3h) , S̃h = 1 +

ǫh
24

+
1

128
ǫ2h +O(ǫ3h) . (3.5)

The entropy density s is proportional to A8, the volume at the horizon of the eight di-

mensional part of the space orthogonal to the t̂, r plane (where t̂ is the Euclidean time),

divided by the infinite constant volume of the 3d space directions V3. From the general

form of the metric (2.20) we get that:

s =
2π A8

κ2
(10) V3

=
r3hR

2S̃4
hF̃hV ol(X5)

25π6g2
sα

′4 =
π5

2V ol(X5)
N2
c

r3h
π3R6

[

1 +
1

8
ǫh +

19

384
ǫ2h +O(ǫ3h)

]

,

(3.6)

which in terms of the temperature reads:

s =
π5

2V ol(X5)
N2
c T

3

[

1 +
1

2
ǫh +

7

24
ǫ2h +O(ǫ3h)

]

. (3.7)

As for the other thermodynamic quantities which will follow, the leading term of this

formula is the well-known unflavored result. The O(ǫh) term was already calculated in [9]

with the probe brane technique, in the X5 = S5 case. We re-obtain the result in a quite

standard way, by computing the increase of the horizon area produced by the flavor branes.

This can be considered as a crosscheck of the validity of the whole construction. Finally,

the order ǫ2h term is a previously unknown contribution.

The expression we have found in (3.7), shows that the relation s = 2π2aFT(T )T 3,

where aFT is the holographic a-charge of the T = 0 theory, holds also in the flavored case,

although only up to first order in ǫh. Let us show this explicitly. The general formula

for the holographic a-function of a flavored T = 0 SQCD-like theory dual to the D3-D7
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background is given by aFT = 27(8π5g2
sα

′4)−1β
3
2H

7
2 (∂rH)−3 [27] where we have defined

H = R4r6V ol(X5)
2S̃8

0F̃
2
0 and β = R4

r4
S̃8

0 F̃
2
0 [28]. Inserting (2.17), we get:

aFT =
π3N2

c

4V ol(X5)

[

1 +
ǫ∗
2

+ ǫ2∗

(

1

6
+

1

2
log

r

r∗
+

5

972

r8

r8∗

)

+O(ǫ3∗)

]

. (3.8)

This formula shows that the holographic central charge is constant up to first order in ǫ∗.

However, it starts running at second order, as a signal of the broken conformal invariance.

Defining aFT(T ) = aFT(rh), we see that the claimed relation with the entropy holds only

at first order.

The ADM energy of the solution can be straightforwardly computed (see appendix B).

It yields the energy density of the plasma and, thus, it allows us to study the full thermo-

dynamics:

ε =
EADM

V3
=

3

8

π5

V ol(X5)
N2
c T

4

[

1 +
1

2
ǫh(T ) +

1

3
ǫh(T )2 +O(ǫh(T )3)

]

. (3.9)

Again, terms suppressed as powers of rh
r∗

have been neglected. Moreover, since in the

following derivatives with respect to T are going to be taken, we find it convenient to make

explicit that ǫh depends on T (see (3.3)). From the relation above we get immediately the

heat capacity (density):

cV = ∂T ε =
3

2

π5

V ol(X5)
N2
c T

3

[

1 +
1

2
ǫh(T ) +

11

24
ǫh(T )2 +O(ǫh(T )3)

]

. (3.10)

The free energy density, and so (minus) the pressure, reads:

F

V3
= −p = ε− Ts = −1

8

π5

V ol(X5)
N2
c T

4

[

1 +
1

2
ǫh(T ) +

1

6
ǫh(T )2 +O(ǫh(T )3)

]

. (3.11)

Notice that, consistently, this satisfies the relation s = ∂T p (where it is crucial to take (3.3)

into account). This result is confirmed by the direct computation of F , which is relegated to

appendix B. Comparing (3.11) to (3.8), we find that p = π2

2 aFT(T )T 4 up to second order.

The speed of sound vs is:

v2
s =

s

cV
=

1

3

[

1 − 1

6
ǫh(T )2 +O(ǫh(T )3)

]

. (3.12)

Note that the correction to the speed of sound only appears at second order. Instead,

when quarks are massive, they break conformal symmetry at tree level and the correction

to the speed of sound is of first order in ǫh [9]. It is also interesting to notice the sign of

the correction, which is consistent with the upper bound v2
s ≤ 1

3 conjectured in [29] for a

certain class of theories (see also [30]). In [29], a heuristic motivation of the bound was

given on the basis of asymptotic freedom, which it is not the case for the present theory.

As far as we know, (3.12) is the first explicit check of this bound in the gravity dual of a

theory with positive β-function.
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Analogous to the running of aFT (eq (3.8)), the deviation from conformality in (3.12)

is a second order effect. In fact, the solution provides a measure of the breaking of confor-

mality at second order from the interaction measure:

ε− 3p

T 4
=

π5N2
c

16V ol(X5)
ǫh(T )2 . (3.13)

The determination of this as well as other thermodynamic quantities on the lattice for

QCD can be found in [31]. Of course, the running of observables in QCD and in our D3-D7

models are opposite.13

Since we have not introduced into the action terms with higher derivatives of the metric

(such as curvature squared terms), the usual theorems apply and the fundamental matter

does not affect the result η
s = 1

4π [10]. We can thus read the value of the shear viscosity

trivially by dividing (3.7) by 4π. Again, while the first order value was already calculated

in [33], the second order result is new.

Concerning the bulk viscosity, if our thermal gauge theories saturate order by order

the bound proposed in [34]:
ζ

η
≥ 2

(

1

3
− v2

s

)

, (3.14)

then ζ would still be zero up to first order. On the other hand, at second order we would

obtain a non-trivial result:14

ζ =
π4

72V ol(X5)
N2
c T

3
[

ǫh(T )2 +O(ǫh(T )3)
]

. (3.15)

Adapting the reasoning in [35] to our case, one can find indications that the bound is

indeed saturated, provided some (reasonable) assumptions are fulfilled. It would be very

interesting to perform the precise holographic calculation of ζ/η to check whether this is

actually the case.

4 Energy loss of partons in D3-D7 plasmas

Let us now consider the energy loss of partons in the quark-gluon plasmas dual to the

non-extremal D3-D7 solutions we have found in section 2.3.

The holographic study of energy loss has turned out to be quite relevant from a phe-

nomenological point of view. This is because the real-world QCD quark-gluon plasma,

whose properties are being studied at RHIC and will be investigated at the LHC, appears

to be strongly coupled [36]. Moreover, the phenomenon of jet quenching observed at RHIC

demands for a very efficient mechanism of energy loss. There are two main ways to account

for this phenomenon in the stringy picture.15

On one hand, it is natural to try to model jet quenching as a result of the

bremsstrahlung that occurs through the strong interactions of the parton probe with the

13In some sense, our solutions could represent a realization of the “magnetic component” of the QGP as

described in [32].
14The fact that the bulk viscosity should be seen as a second order effect was already observed in [33].
15See also [37].
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quarks and gluons in the plasma. In perturbation theory, this mechanism is effectively cap-

tured by a transport coefficient termed q̂, the jet-quenching parameter [11]. At very high

energy, and using the eikonal approximation, the authors of [12] found a non-perturbative

prescription for calculating q̂ as the coefficient of L2 in an almost light-like Wilson loop with

dimensions L− ≫ L. Being non-perturbative it can be implemented in a string theoretic

framework and this was done for the first time in [12]. Following this prescription,16 we

will compute q̂ for our backreacted background in section 4.1.

On the other hand, at strong coupling the energy loss of a probe passing through a

medium can be modeled entirely within a string theoretic framework [13, 14]. A parton of

velocity v is described by a macroscopic string attached to a probe flavor brane. The string

is dragged by a constant force f which keeps the velocity fixed. The drag force transfers

energy and momentum to the parton, which are lost in the plasma at a constant rate. The

drag coefficient µ, which measures the energy loss, is then calculated from the equation

f = µp, where p is the parton momentum. In section 4.2, we will deal with this drag force

in the flavored background.

It is worth noticing that the computations we will make with the Nambu-Goto action

receive stringy corrections of order λ−
1
2 [39]. If we want them to be subleading with respect

to the flavor corrections, we need to require λ−
1
2 ≪ ǫh, which is more restrictive than (2.27).

4.1 The jet quenching parameter

Let us compute the jet quenching parameter q̂ following the prescription of [12]. Taking

the generic formula in [16]17 (and cutting the integral at r∗), we can write:

q̂−1 = π α′
∫ r∗

rh

e−
Φ
2

√
grr

gxx
√
gxx + gtt

dr =
R4π α′

r2h
e−

Φh
2

∫ r∗

rh

e−
(Φ−Φh)

2
S̃4F̃

√

r4 − r4h

dr . (4.1)

The dilaton enters the formula because we are considering the Einstein frame metric. We

have extracted e−
Φh
2 because we want to factor out the physical IR parameter

√
λh =

e
Φh
2
√

4π gsNc = e
Φh
2
R2

α′

√
V ol(X5)

π
3
2

. We can now insert (2.22) and write everything in terms

of ǫh rather than ǫ∗. Finally, performing a change of variable ̺ = r
rh

, we can write the

inverse of the jet quenching parameter as:

q̂−1 =
π R6

r3h
√
λh

√

V ol(X5)

π
3
2

[

I0 + I1ǫh + I2ǫ
2
h +O(ǫ3h)

]

. (4.2)

The integrals that appear at each order are:

I0 =

∫ ∞

1

1
√

̺4 − 1
d̺ =

√
π Γ(5

4)

Γ(3
4)

,

I1 =

∫ ∞

1

1 − 4 log ̺

8
√

̺4 − 1
d̺ =

√
π Γ(5

4)

Γ(3
4)

1 − π

8
,

16In [38] a different approach to the same problem has been recently proposed.
17We took into account a different factor of

√
2 between the definition of [12] and of [16].
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I2 =

∫ ∞

1

19 − 8 log ̺− 48 log2 ̺− 12Li2(1 − ̺−4)

384
√

̺4 − 1
d̺ =

=

√
π Γ(5

4)

Γ(3
4)

1

384

[

19 − 48C − π(2 + 3π) − 8 4F3

(

1, 1, 1,
3

2
;
7

4
, 2, 2; 1

)]

, (4.3)

where C ∼ 0.91597 is the Catalan constant. The upper limit of the integral has been taken

to infinity instead of ̺∗ = r∗
rh

since all the integrands are of order ̺−2 at large ̺ and,

therefore,
∫∞−

∫ ̺∗ = O(̺−1
∗ ) = O( rhr∗ ), which, as usual, we disregard. The jet quenching

parameter in terms of gauge theory quantities reads:

q̂ =
π3

√
λhΓ(3

4 )
√

V ol(X5) Γ(5
4)
T 3

[

1 +
1

8
(2 + π)ǫh + γ ǫ2h +O(ǫ3h)

]

, (4.4)

where we have introduced a constant γ:

γ =
11

96
+

π

48
+

3π2

128
+

1

8
C +

1

48
4F3

(

1, 1, 1,
3

2
;
7

4
, 2, 2; 1

)

≈ 0.5565 . (4.5)

4.1.1 Possible implications for phenomenology

We can now discuss some physics coming from (4.4). In [40], it was shown that for a class

of theories with only adjoint (and bifundamental) fields with gravity duals, one can write:

q̂ = c
√

λh

√

s

N2
c

T
3
2 , c =

√
2π

Γ(3
4)

Γ(5
4)

. (4.6)

It was argued that deviations from this formula could come from having fundamental fields

or from non-conformality of the theory. In our case we actually deal with both of these

effects. As far as we know, this is the first set-up in which one can directly test the effect

of fundamental fields on the jet quenching parameter in a framework completely under

control. The expression (4.6) is modified to:

q̂ = c
√

λh

√

s

N2
c

T
3
2

[

1 +
π

8
ǫh +

(

γ − 11

96
− π

32

)

ǫ2h +O(ǫ3h)

]

. (4.7)

Thus, from the point of view of this formula, q̂ increases if Nf > 0. At first sight, one

could think that this enhancement of the jet quenching parameter is a trivial effect due

to the increase of degrees of freedom of the plasma because of the addition of new fields.

This is a naive conclusion since, as remarked in [12], the expression (4.6) shows that,

contrary to previous expectation, q̂ is not linked to the number of degrees of freedom.

However, it is instructive to make the following gedanken experiment:18 imagine we have

a flavor-less plasma at temperature T , entropy density s and with Nc,1 colors. One can

think of replacing some of the adjoints by fundamentals, while keeping the total number of

degrees of freedom (namely, the entropy density s) fixed. We will also maintain fixed the

temperature T and the coupling constant αs = g2
YM/(4π) at the scale set by T .19 We thus

18We thank David Mateos for suggesting this comparison.
19Fixing λh instead of αs produces the same result. Fixing Nc and ǫh gives instead the opposite behavior,

but it seems a pathological choice, since it does not include the unflavored limit ǫh → 0.
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compare the theory with Nc,1 colors and no flavors to a theory with Nc,2 (< Nc,1) colors

and Nf flavors. Concretely, keeping T , s fixed requires Nc,2 = Nc,1(1− 1
4ǫh − 5

96ǫ
2
h), where

we have used (3.7). For the flavored theory, but written in terms of Nc,1 (the corresponding

number of colors of the unflavored theory), we would have:

q̂ = c
√

Nc,1 g
2
YM

√

s

N2
c,1

T
3
2

[

1 +
1 + π

8
ǫh +

(

γ − 25

384
− π

64

)

ǫ2h +O(ǫ3h)

]

. (4.8)

The positive sign of the correction terms shows that the flavors enhance the jet quenching.

This conclusion is confirmed in the alternative comparison scheme proposed in [41], in which

the energy density and the force between external quarks are kept fixed, while T and λh are

varied.20 The fact that the jet quenching is enhanced in all of these comparison schemes

(we found no reasonable counter-examples) seems to indicate that the result is quite robust.

Interestingly, the enhancement of the jet quenching by flavors was already observed

in [4] in the context of a non-critical five-dimensional string dual of a flavored plasma. Of

course, in that model the string corrections are not under control, while in the present case

the result is completely trustworthy.

Let us close this section by making a numerical estimate of the jet quenching parameter,

by inserting quantities relevant at RHIC, even if it is not clear which is the best way to

extrapolate the results from the theories here discussed when giving estimates for QCD. As

a first step, in order to compare with the unflavored N = 4 SYM result in [12], let us pick

V ol(X5) = V ol(S5) = π3 and extrapolate our result to the realistic regime (which is not

included in the regime of validity of any holographic model) where αs ∼ 1/2 and Nc = 3,

i.e. λh ∼ 6π. Then we would have ǫh ∼ 1
4πNf ∼ 0.24 for Nf = 3. From (4.4) we read that

the correction with respect to the N = 4 SYM result corresponds to an increase of about

20% for Nf = 3. As an example, at T = 300 MeV we would get q̂ ∼ 5.3 (Gev)2/fm, to be

compared with the value q̂ ∼ 4.5 (Gev)2/fm of the unflavored plasma [12]. The flavored

result would be right in the ballpark of RHIC values, i.e. q̂ ∼ 5 − 15 (Gev)2/fm.

This comparison with QCD involves two theories with a different number of degrees

of freedom. Should we compare the two theories at fixed temperature, entropy density

and αs, as discussed above, we would get a smaller q̂. Let us take sQCD/T
3 ∼ 17.5 at

T = 300 MeV from [31] (figure 10). Then, using (3.7), and inserting Nf = 3 and ǫh = 3
4π ,

we get a smaller coupling λh ∼ 11.1. This would imply, from (4.4), that q̂ ∼ 4.1 (Gev)2/fm.

In the same scheme, in the flavorless N = 4 SYM limit we would get q̂ ∼ 3.5 (Gev)2/fm.

Let us note that the interaction measure in the latter scheme is rather small, (ε −
3p)/T 4 = N2

c π
2ǫ2h/16 ∼ 0.11. In lattice QCD it is also known to be small at temperatures

above 2Tc ∼ 400 MeV, where the theory is nearly conformal, but not that much. For

example, from figure 4 in [31], it is around 1 for temperatures around 500 MeV. Of course,

20To be more specific and working at first order in ǫh: Nc is kept fixed, so from the matching of ε one gets

T2 = T1(1− ǫh/8), so q̂2/q̂1 =
p

λh,2/λh,1[1 + (π − 1)ǫh/8]. The coupling λh is adjusted in such a way that

the force between two external quarks at the screening length of the first plasma, αqq = 3L2
c,1V

′(Lc,1)/4,

is kept fixed [41]. By numerically computing the potential V (L) from the Wilson loop in the two plasmas

and equating the two forces αqq , one straightforwardly finds that λh,2 > λh,1 and so q̂2 > q̂1.
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in QCD (ε− 3p)/T 4 has a large contribution also at the flavorless level, being proportional

to the trace anomaly.

4.2 The drag force

Let us now consider a heavy quark moving through our D3-D7 plasmas and compute the

drag force it experiences, following the general procedure described in [13–15]. We consider

a simple string configuration representing a test quark moving in a given spatial direction

x: t = τ̂ , r = σ̂, x = x(σ̂, τ̂). In particular, we will just discuss the stationary string

configuration (an open string with an extremum attached to a probe D7-brane at r = r∗)

corresponding to a quark which moves at constant velocity, such that the energy loss due to

friction with the medium is compensated by an external force. This is achieved by setting

x(σ̂, τ̂) = r(σ̂)+v τ̂ . We have to analyze the Nambu-Goto action in the background metric

ds2str = eΦ/2ds2 with ds2 given in (2.20). We can use general results from [15] and define

C as the constant determined from the equation gxx(rc)gtt(rc) + C2 = 0 with the point rc
given by gtt(rc) + gxx(rc)v

2 = 0, namely rc = rh(1 − v2)−
1
4 . Then, the rate of momentum

transferred to the medium is given by [15]:

dp

dt
= − 1

2πα′C = − r2h
2πα′R2

e
Φ(rc)

2
v√

1 − v2
= −µMkin

v√
1 − v2

, (4.9)

where we have introduced notation from [13]: a friction parameter µ such that dp
dt =

−µ p and a kinematical mass Mkin such that p = Mkin
v√

1−v2 . From (4.9), us-

ing (2.15), (2.22), (3.2), (3.4), we find:

µMkin =
π5/2

2

√
λh

√

V ol(X5)
T 2

[

1 +
1

8
(2 − log(1 − v2))ǫh+ (4.10)

+
1

384

[

44 − 20 log(1 − v2) + 9 log2(1 − v2) + 12Li2(v
2)
]

ǫ2h +O(ǫ3h)

]

.

As in section 4.1, the energy loss (at fixed v) is enhanced by the presence of fundamental

matter, also in the different comparison schemes described in section 4.1.1. The quantity

µMkin grows when increasing the velocity. From (4.10), formally, it would diverge as v → 1.

However, (4.10) is not applicable in that limit since we have to require ǫh log(1 − v2) ≪ 1

for the expansions to be valid.

5 Deforming AdS5 × S5 with massive flavors

In this section, we will write down the generalization of equations (2.10), (2.11) for the case

in which the backreacting flavors are massive (all with the same modulus of the mass). The

search for solutions and the study of the physics is left for future work. Some technical

details associated to this section are relegated to appendix C.

The extra complication we face when the quarks are massive is that the D7-brane

embeddings are in this case non-trivial and, in fact, have to be studied numerically (when

T > 0, even if backreaction is not taken into account). Moreover, this case cannot be
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studied with the same generality as the massless one, since the mentioned embedding

equations do depend on the metric of the Kähler-Einstein space. We will focus in the

case where the set-up is a flavor deformation of the AdS5 × S5 black hole. Thus, the

Kähler-Einstein space is CP 2 and the ten dimensional metric we consider is (2.6) with:

ds2CP 2 =
1

4
dχ2 +

1

4
cos2 χ

2
(dθ2 + sin2 θdϕ2) +

1

4
cos2 χ

2
sin2 χ

2
(dψ + cos θdϕ)2 ,

ACP 2 =
1

2
cos2 χ

2
(dψ + cos θdϕ) . (5.1)

The range of the angles is 0 ≤ χ, θ ≤ π, 0 ≤ ϕ, τ < 2π, 0 ≤ ψ < 4π. The F(5) RR field

strength takes the same form as in the massless case, but F(1) picks up a dependence on

the radial coordinate:

F(5) = Qc (1 + ∗)ε(S5) , F(1) = Qf p(σ) (dτ +ACP 2) , (5.2)

where p(σ) is a function which depends on the brane embeddings. It has to vanish at

scales smaller than the quark masses and to asymptote to 1 at energy scales much larger

than the quark masses.

First of all, we have to write down the equation that determines the embedding of a

D7-brane in this background. Let us take as a “fiducial brane” one wrapping θ, ϕ, ψ, with χ

a function of σ and situated at fixed τ . The rest of the family of embeddings needed for the

smearing are obtained from the fiducial one by acting with the symmetries of the internal

space, see appendix C for a discussion. The DBI action for this fiducial brane reads:

SDBI = −T7

8

∫

d8x eΦb sin θS6F 2 cos3
(χwv

2

)

√

cos2
(χwv

2

)

+
S2

F 2
sin2

(χwv
2

)

×
√

1 +
(∂σχwv)2

4b S6 F 2
, (5.3)

where χwv is the function of σ that determines the brane embedding. The 8d integral

is taken along the Minkowski directions, θ, ϕ, ψ and σ. There is also a WZ term due

to the coupling to the background C(8). The C(8) potential can be computed from

dC(8) = e2Φ(∗F(1)). The WZ piece of the action is:

SWZ = −T7

32
Qf

∫

d8x sin θp(σ)b e2ΦS8 cos4
(χwv

2

)

. (5.4)

The equation of motion for χwv follows from the action Swv = SDBI + SWZ:

0 =
1

2
∂σ

(

eΦ cos3 χwv
2

Ξ1

Ξ2
(∂σχwv)

)

+ (5.5)

+eΦb S6F 2 cos2 χwv
2

sin
χwv
2

(

3Ξ1Ξ2+cos2 χwv
2

(

1− S2

F 2

)

Ξ2

Ξ1
+Qfe

Φ S
2

F 2
cos

χwv
2
p(σ)

)

.

In order to abbreviate the notation, we have introduced the quantities:

Ξ1 ≡
√

cos2
(χwv

2

)

+
S2

F 2
sin2

(χwv
2

)

, Ξ2 ≡
√

1 +
(∂σχwv)2

4b S6 F 2
. (5.6)
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The next step is to write down the one-dimensional effective action for the closed string

fields, namely the dilaton and the functions that enter the ansatz for the metric. This is

similar to (2.9) but one has to take into account the σ-dependence of F(1) and that the

DBI term is Nf times (5.3). As before, the WZ term does not contribute because it does

not depend on the metric and the dilaton. We get:

Seff =
π3V1,3

2κ2
10

∫

dσ

(

−1

2

(∂σh)
2

h2
+ 12

(∂σS)2

S2
+ 8

(∂σF )(∂σS)

F S
− 1

2
(∂σΦ)2+

+
(∂σb)

2b

(

(∂σh)

h
+ 8

(∂σS)

S
+ 2

(∂σF )

F

)

+ 24b F 2 S6 − 4b F 4 S4+

− 1

2
Q2
c

b

h2
− 1

2
Q2
fp(σ)2e2Φb S8 − 4Qf cos3

(χwv
2

)

Ξ1Ξ2e
Φ b S6 F 2

)

. (5.7)

One can readily compute the equations of motion from this Lagrangian. An important point

to note is that χwv is not a field in this lagrangian. Its equation of motion (5.5) was derived

from the worldvolume action. We find the following set of Euler-Lagrange equations:

∂2
σ(log b) = 0 ,

∂2
σ(log h) = −Q2

c

b

h2
,

∂2
σ(log S) = −2bF 4S4 + 6bF 2S6 − 1

2
Qf e

Φb F 2 S6 cos3 χwv
2

(

Ξ1

Ξ2
+ cos2

χwv
2

Ξ2

Ξ1

)

,

∂2
σ(logF ) = 4b F 4S4 −

Q2
f

2
e2Φb S8p(σ)2 − 2

Ξ2

Ξ1
eΦQf b S

8 cos3 χwv
2

sin2 χwv
2

,

∂2
σΦ = Q2

f e
2Φ b S8p(σ)2 + 4Qfe

Φ b S6F 2 cos3 χwv
2

Ξ1Ξ2 . (5.8)

The first order constraint, generalizing (2.11), reads:

0 = −1

2

(∂σh)
2

h2
+ 12

(∂σS)2

S2
+ 8

(∂σF )(∂σS)

F S
− 1

2
(∂σΦ)2 +

+
(∂σb)

2b

(

(∂σh)

h
+ 8

(∂σS)

S
+ 2

(∂σF )

F

)

− 24b F 2 S6 + 4b F 4 S4 +

+
1

2
Q2
c

b

h2
+

1

2
Q2
fe

2Φb S8 p(σ)2 + 4Qfe
Φ b S6 F 2 cos3 χwv

2

Ξ1

Ξ2
. (5.9)

The only ingredient left to know is the precise expression for p(σ). The answer is given in

appendix C:

p(σ) = cos4
χwv
2

. (5.10)

The system of equations (5.5), (5.8), (5.9), together with (5.10) defines the solution for

a finite temperature D3-D7 background where the quarks are massive (all of them with

the same modulus of the mass). If at some value σ = σq above the horizon χwv reaches

the value χwv = π, it means that the flavor branes only have support for σ ≥ σq. In

that case, it has to be understood that equations (5.5), (5.8), (5.9), (5.10) are valid

for σ > σq whereas for σ < σq, one has the unflavored system of equations (namely

one should substitute Qf = 0 for σ < σq in all the equations). At σ = σq, one has to

– 19 –



J
H
E
P
1
1
(
2
0
0
9
)
1
1
7

impose appropriate matching conditions. Detailed discussions of this feature in various

supersymmetric cases can be found in [19, 20, 22, 23].

By deriving the constraint (5.9) with respect to σ and inserting (5.5), (5.8), (5.10), one

obtains an identity, proving that the system of equations is self-consistent. This can be

considered a crosscheck for the whole procedure. The massless limit is given by χwv = 0,

Ξ1 = Ξ2 = 1, and one recovers the set-up of section 2.

5.1 The supersymmetric case

We now consider the zero temperature solution of the system with massive flavors. One

can check that the following first order equations solve (5.5), (5.8), (5.9):

b = 1, ∂σh = −Qc, ∂σF = S4F

(

3 − 2
F 2

S2
− Qf

2
eΦ cos4 χwv

2

)

,

∂σS = S3F 2, ∂σχwv = −2S4 tan
χwv
2
, ∂σΦ = Qf S

4eΦ cos4
χwv
2
. (5.11)

These are BPS conditions, generalizations of (2.12), which determine the supersymmetric

solutions. It is convenient to define a ρ coordinate as dρ = S4dσ. In the ρ coordinate, the

embedding is just sin χwv

2 = eρq−ρ, where ρq is an integration constant related to the bare

quark masses. We can write explicit expressions for S,F,Φ, for ρ > ρq:
21

S = α′ 1
2 eρ
(

1+ǫ∗

(

1

6
+ρ∗−ρ−

1

6
e6ρq−6ρ− 3

2
e2ρq−2ρ+

3

4
e4ρq−4ρ− 1

4
e4ρq−4ρ∗+e2ρq−2ρ∗

))
1
6

F = α′ 1
2 eρ

(

1 + ǫ∗(ρ∗ − ρ− e2ρq−2ρ + 1
4e

4ρq−4ρ + e2ρq−2ρ∗ − 1
4e

4ρq−4ρ∗)
)

1
2

(

1 + ǫ∗(
1
6 + ρ∗ − ρ− 1

6e
6ρq−6ρ − 3

2e
2ρq−2ρ + 3

4e
4ρq−4ρ − 1

4e
4ρq−4ρ∗ + e2ρq−2ρ∗)

)
1
3

Φ = Φ∗ − log

(

1 + ǫ∗

(

ρ∗ − ρ− e2ρq−2ρ +
1

4
e4ρq−4ρ + e2ρq−2ρ∗ − 1

4
e4ρq−4ρ∗

))

. (5.12)

Setting ρq → −∞ one recovers the massless solution (2.13).

We still have to write the solution for ρ < ρq. The flavor branes do not reach this

region and the equations of motion for the background are (5.11) with Qf = 0. Thus,

the dilaton is constant and, by continuity, it has the value that can be read from (5.12)

inserting ρ = ρq:

ΦIR = Φq = Φ∗ − log

(

1 + ǫ∗

(

ρ∗ − ρq −
3

4
+ e2ρq−2ρ∗ − 1

4
e4ρq−4ρ∗

))

. (5.13)

The functions S and F are equal:

S = F = α′ 1
2 eρe−

1
6
(ΦIR−Φ∗) , (ρ < ρq) . (5.14)

We defer a more detailed analysis of these solutions and of their generalizations to finite

temperature to future work.

21In integrating S, F, Φ, we have fixed integration constants as in the massless case. Moreover we have

required S|ρ=ρq = F |ρ=ρq to ensure regularity in the IR (at ρ = −∞) as explained in [20].
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6 Summary

In this paper we have presented a backreacted supergravity solution dual to a flavored ver-

sion of the N = 4 SYM plasma, with massless flavors in the group U(1)Nf . Our construction

is also valid for black holes on AdS5 ×X5 backgrounds, with X5 a generic Sasaki-Einstein

space. In all the cases the T = 0 solutions preserve N = 1 supersymmetry in 4d.

The solutions we provide are perturbative, like the one presented in [25] for the un-

flavored thermal conifold theory. The relevant expansion parameter here, ǫh ∼ λhNf/Nc,

weighs the internal flavor loop contributions to the unflavored field theory background. In

the range of physical parameters associated to RHIC, we can reasonably expect values of

ǫh ∼ 0.24. On the other hand, this makes it a nice expansion parameter, and keeping cor-

rections up to order ǫ2h yields a very good approximation to the full result. This is precisely

the order at which we are able to provide a solution in the present paper. Moreover, leading

order ǫh corrections are already of about 20% which are clearly dominant over curvature cor-

rections. These come with a λ
−3/2
h for string corrections to the supergravity lagrangian and

with ǫhλ
−1
h for corrections coming from the DBI action of the D7 branes [42]. For a realistic

value λh ∼ 6π both of them are ∼ 1%, although the precise value will very much depend

on the prefactor, which can vary from one quantity to another. For example, for the free

energy, the prefactor is of O(1) [43], and therefore we expect the previous assertion about

the dominance of flavor corrections to hold true for equilibrium quantities, like the entropy.

On the other hand, dynamical quantities, like transport coefficients don’t necessarily ex-

hibit this hierarchy. Such is the case, for example, of the quotient η/s which is uncorrected

by the flavor, whereas curvature corrections give a large prefactor to λ
−3/2
h of O(10) [44].

Flavor corrected thermodynamics shows a departure from conformality at O(ǫ2h), which

agrees with expectations, since we are adding massless flavors and therefore conformal

symmetry is broken by quantum effects. Being very mild, it would be very interesting to

study the hydrodynamics of the plasma, in particular the bulk viscosity.

We also considered the energy loss of probes in the plasma, by calculating the jet

quenching parameter and the friction parameter. The outcome is that the energy loss

is increased by the presence of matter in the fundamental representation. Even if this

statement needs to be supplemented with some prescription of how to compare different

theories, we found it to be true in all the reasonable comparison schemes that we analyzed.

Thus, for example, the value of the jet quenching parameter, as compared to the one in

N = 4 SYM, is shifted towards the RHIC phenomenological window. It would be important

to understand better the physical reasons behind this result and its implications, if any,

for phenomenology. For example, there are indications that the smaller perturbative cross

section of quarks with respect to gluons in the jet quenching process is not consistent with

the data, suggesting that the strong coupling cross sections should be quite a bit larger

(see for example [45], section 3.2).

Besides the straightforward application to the study of phenomena like the ones men-

tioned above, having analytical control over a perturbative solution may prove instrumental

when trying to obtain an exact backreacted one by numerical methods, so as to provide

correct boundary and matching conditions.
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We finally began to attack the problem of the backreaction of massive quarks. We

derived the equations of motion and briefly considered the zero temperature case. It is

conceivable that a solution at finite temperature can be calculated and analyzed following

the methods in this paper.

Apart from the ones outlined above, there are a number of properties and extensions of

our solutions that deserve to be studied. Basically any observable calculated in N = 4 SYM

could be analyzed in the present setting. We hope to report on these issues in the future.

Also, one might think about putting the system at finite charge density and studying its

properties.
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(grant 4.4505.86) and the Interuniversity Attraction Poles Programme (Belgian Science

Policy). A. C. is also supported by the FWO - Vlaanderen, project G.0235.05 and by

the Federal Office for Scientific, Technical and Cultural Affairs through the Interuniver-

sity Attraction Poles Programme (Belgian Science Policy) P6/11-P. The research of A.P is

supported by grants FPA2007-66665C02-02 and DURSI 2009 SGR 168, and by the CPAN

CSD2007-00042 project of the Consolider-Ingenio 2010 program. A. V. R., J.M. and J.T.

are supported by the MEC and FEDER (grant FPA2008-01838), the Spanish Consolider-

Ingenio 2010 Programme CPAN (CSD2007-00042) and Xunta de Galicia (Conselleria de

Educacion and grant PGIDIT06PXIB206185PR). J.T. is also supported by MEC of Spain

under a grant of the FPU program.

F.B. and A.L.C. would like to thank the Italian students, parents and scientists for

their activity in support of public education and research.

A Technical details regarding the DBI contribution to the effective ac-

tion

Let us justify the form of the last term in (2.9), which comes from the DBI action of the

flavor branes. In the supersymmetric case (b = 1), we can use the results of [7], where a two-

form Ω, related to the distribution density of the flavor branes, was introduced. This form

Ω is such that dF(1) = −gsΩ ≡ −gs
∑

i Ω
(i), with the Ω(i) being decomposable as the wedge

product of two one-forms. Using supersymmetry, it was pointed out in [7] that SDBI =

−T7

∫

d10x
√−g10eΦ

∑

i

√

1
2Ω

(i)
MNΩ

(i)
PQg

MNgPQ. Since Ω can be directly computed from the

expression of F(1) in (2.7), the T = 0 version (b = 1) of the last term in (2.9) is readily found.

In order to generalize this result to the finite temperature case, one essentially needs

to prove that the massless embeddings of the supersymmetric case are still solutions of the
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finite temperature case. With this purpose in mind, let us consider a generic AdS5-BH×X5

background with metric:

ds2 = h−1/2
[

−b dt2 + d~x3

]

+ h1/2

[

dr2

b
+ r2ds2KE + r2(dτ +AKE)2

]

. (A.1)

Let us write the Kähler-Einstein metric as:

ds2KE = dα2 +
3
∑

i=1

wi(α)σ2
i , (A.2)

where the one forms σi depend on the other angular coordinates ξa, a = 1, 2, 3. The

one-form AKE will depend on α and ξa and will not have a component along dα.

Let us consider a D7-brane extended along t, xi, r, τ, ξ1, ξ2 and pick α = α(r) , ξ3 =

ξ3(r). It is easy to show that the massless embedding α = const = α0, ξ3 = const = ξ0 is

a solution of the second order equations following from the D7 DBI lagrangian if

∂αH(α, ξa)|α=α0 = 0 , ∂ξ3H(α, ξa)|ξ3=ξ0 = 0 , (A.3)

where H(α, ξa) is the square root of the determinant of the metric of the three-dimensional

compact space X3 defined as the α, ξ3 = const slice of X5. The conditions (A.3) are the

same that one would find in the T = 0 (i.e. b = 1) case. Following an analogous reasoning,

one can check that α = α0, ξ3 = ξ0 is also a solution of the D7 equations of motion for the

backreacted geometries (both at T = 0 and at T > 0). Using the isometries of the internal

manifold, one can generate the family of embeddings needed for the smearing (both at

T = 0 and at T > 0).

Moreover, the relation between Qf and Nf can be determined by looking at this last

term of (2.9). The DBI on-shell action for Nf “massless” branes is just:

SDBI = −T7Nf

∫

d8x eΦ
√−g8 = −T7NfV ol(X3)V1,3

∫

dσ eΦ b S6 F 2 , (A.4)

where V ol(X3) is the volume of the constant ξ3, constant α slice of X5 that the D7

wraps, as discussed above. In (2.9), the constant in front of this expression was defined as

−4Qf
V ol(X5)V1,3

2κ2
10

. Equating and using 2κ2
10T7 = gs, we find the second relation in (2.8). It

is worth noticing that the factor V ol(X5)
V ol(X3) appearing in (2.8) is just the volume transverse

to any flavor brane.

B Computation of the ADM energy and the free energy

Let us derive the result (3.9). The ADM energy is given by:22

EADM = − 1

κ2
10

√

|gtt|
∫

d8x
√

det g8(KT −K0) . (B.1)

The eight-dimensional integral is taken over a constant time, constant radius hypersurface.

The symbols KT and K0 are the extrinsic curvatures of the eight-dimensional subspace

22We use the notations in [46].
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within the nine-dimensional (constant time) space, at finite and zero temperature, respec-

tively. They are defined as K ≡ 1√
det g9

∂µ(
√

det g9n
µ) where nµ is a normalized vector

perpendicular to the surface. Since we consider constant r hypersurfaces, this is just

nµ = 1√
grr
δµr . The metric on the eight-dimensional slice must be equal for the zero tem-

perature and finite temperature solutions that are being compared. With the solution

written in (2.22), this is the case when r = r∗ without any further rescaling of coordinates.

Using (2.5), (2.15), (2.20), the explicit expression for the ADM energy reads:

E = − πN2
c V3

4V ol(X5)R8

r∗
R





r

√

1 − r4
h

r4

R S̃4F̃
∂r(r

3R2S̃4F̃ )
∣

∣

∣

r=r∗
− r

R S̃4
0F̃0

∂r(r
3R2S̃4

0F̃0)
∣

∣

∣

r=r∗



 .

(B.2)

Plugging in the solutions (2.17), (2.22) we get:

ε =
E

V3
=

3

8
π2N2

c

( rh
π R2

)4
[

1 +
ǫ2∗
24

+O(ǫ3∗)

]

, (B.3)

where we have discarded terms suppressed by powers of rh
r∗

. We can now write the result

in terms of ǫh and T by substituting (3.2) and (3.4), and obtain (3.9).

Let us now directly compute the free energy in (3.11). It is given by the Euclidean ac-

tion I (renormalized by subtracting the zero temperature result) evaluated on the solution

and divided by the inverse temperature β [47]. We can write:

F =
1

β
(Ibulk,T − Ibulk,T=0 + Isurface,T − Isurface,T=0) . (B.4)

We take r∗ as the radial cut-off for the integrals, such that the finite T and zero T geometries

coincide. The only subtlety comes from the fact that gTtt(r∗) 6= g0
tt(r∗). Thus, in order to

compare the solutions, we ought to rescale the Euclidean time of the zero temperature

solution such that its period is β0 = β

√
gT

tt(r∗)√
g0tt(r∗)

= β

√

1 − r4
h

r4
∗

, where β is the period of the

Euclidean time of the finite T solution.

The bulk action comes from the sum of (2.3) and (2.4). The WZ term in (2.4) does

not contribute on-shell for the massless embeddings we are discussing here. By using the

equations of motion of the system, one can prove that the integrand of the on-shell action

is just equal to −8r3. We get a very simple expression:

−2κ2
10

V3V ol(X5)
(Ibulk,T − Ibulk,T=0) =



β

∫ r∗

rh

(−8r3)dr − β

√

1 − r4h
r4∗

∫ r∗

0
(−8r3)dr



 = βr4h .

(B.5)

In this expression and the following, it is understood that corrections in powers of rhr∗ and of

order ǫ3∗ or higher are discarded. The surface action comes from the Gibbons-Hawking term:

Isurf = − 1

κ2
10

∫

Σ
KdΣ , (B.6)
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where Σ is the 9d subspace at r = r∗ and K the extrinsic curvature of this hypersurface

within the full 10d space. Explicitly:

−2κ2
10

V3V ol(X5)
(Isurf,T − Isurf,T=0) = 2



β
r

√

1 − r4
h

r4

R S̃4F̃
∂r(r

4R

√

1 − r4h
r4
S̃4F̃ )

∣

∣

∣

r=r∗
(B.7)

−β
√

1 − r4h
r4∗

r

R S̃4
0 F̃0

∂r(r
4RS̃4

0F̃0)
∣

∣

∣

r=r∗



 = −1

8
βr4hǫ

2
∗ .

Summing the bulk and surface contributions and inserting (2.5), (2.15), we get:

F = I β−1 = V3
π5N2

c

8V ol(X5)

( rh
π R2

)4
[

1 − 1

8
ǫ2∗ +O(ǫ3∗)

]

. (B.8)

In terms of ǫh and T from (3.2), (3.4), we recover (3.11).

C The smeared Karch-Katz model

In this appendix, we want to write down the family of embeddings that participate in the

smearing of massive flavors in AdS5 × S5 (at the end of the appendix we comment on the

generalization to finite temperature backreacted backgrounds). They are all holomorphic

embeddings in a given set of complex coordinates and therefore the overall preserved super-

symmetry is N = 1. From the geometric point of view, rewriting the N = 4 theory in N = 1

components amounts to rewriting the metric of S5 in the canonical Sasaki-Einstein form,

i.e. as a U(1) bundle over a complex 4d Kähler manifold. In this case, the latter is CP 2.

In the following, we use the notation from [48]. Let us consider C3 with complex

coordinates Z1, Z2, Z3 and metric:

ds2 = |dZ1|2 + |dZ2|2 + |dZ3|2 . (C.1)

We introduce a radial variable r such that Zi = rzi, with r2 =
∑ |Zi|2 and the zi spanning

a unit five-sphere:

|z1|2 + |z2|2 + |z3|2 = 1 . (C.2)

This constraint is invariant under SU(3) rotations of the zi and under the transformation

zi → eiαzi, where α is a phase.23 The space CP 2 is the space of orbits under the action of

this U(1) group. We can parameterize:

z1 = cos
χ

2
cos

θ

2
e

i
2

(2τ+ψ+ϕ) , z2 = cos
χ

2
sin

θ

2
e

i
2

(2τ+ψ−ϕ) , z3 = sin
χ

2
eiτ .(C.3)

By inserting (C.3) into (C.1), one gets the metric of S5 as written in (2.1), (5.1). The

gauge theory U(1)R symmetry is related to the isometry generated by the Killing vector

∂τ . The volume element of S5 in these coordinates is:

ε(S5) =
1

64
sin θ sinχ(1 + cosχ) dτ ∧ dψ ∧ dϕ ∧ dθ ∧ dχ . (C.4)

23Of course, rewriting Zi = yi + iyi+3 and so on, with yj real, the defining equation for S5 reads
P6

j=1 yj2
= 1. This is actually invariant under the larger group SO(6) ∼ SU(4). The choice of an

holomorphic parameterization breaks this symmetry group to the smaller SU(3) × U(1)R one.
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The range of the angles is 0 ≤ χ, θ ≤ π, 0 ≤ ϕ, τ < 2π, 0 ≤ ψ < 4π such that
∫

ε(S5) =

V ol(S5) = π3. We now discuss the holomorphic embeddings. We can take Z3 = rq
with rq real (and related to the modulus of the quark mass) as the “fiducial” (Karch-Katz)

embedding [49]. In terms of the coordinates, the fiducial worldvolume satisfies sin χwv

2 =
rq
r

and τ = 0. Notice that r is constrained by r ≥ rq and that it diverges for χ = 0. Acting on

it with the SU(3)×U(1)R isometry group, we can write the following family of holomorphic

embeddings:
3
∑

i=1

aiZ
i = rq e

iβ , with

3
∑

i=1

|ai|2 = 1 , (C.5)

where 0 ≤ β < 2π is associated to the phase of the quark mass and the ai are complex

parameters. They span a unit five-sphere and therefore we can represent them by using a

parameterization similar to the one for the z’s in (C.3), in terms of the tilded coordinates

χ̃, θ̃, τ̃ , ψ̃, ϕ̃. Then the generalized Karch-Katz embedding (C.5) can be rewritten as:

ei(τ+τ̃ )e
i
2
(ψ+ψ̃+ϕ+ϕ̃)Γ =

rq
r
eiβ , (C.6)

with:

Γ ≡ cos
χ̃

2
cos

θ̃

2
cos

χ

2
cos

θ

2
+ cos

χ̃

2
sin

θ̃

2
cos

χ

2
sin

θ

2
e−i(ϕ+ϕ̃) + sin

χ̃

2
sin

χ

2
e−

i
2
(ψ+ψ̃+ϕ+ϕ̃) .

(C.7)

The superpotential of the theory reads schematically:

W = Φ1[Φ2,Φ3] + q̃(a1Φ1 + a2Φ2 + a3Φ3 −m)q , (C.8)

where Φ1,2,3 are the three complex scalars of N = 4 and the q’s are the matter multiplets

of mass m ∼ rqe
iβ in the fundamental representation provided by the D7-branes.

Following the procedure of [20], our goal now is to consider a homogeneous, symmetry

preserving, distribution of D7-branes using this six-parameter family of embeddings and

compute their charge density Ω, such that dF(1) = −gsΩ. Let us start by splitting the

complex equation (C.6) into two real ones f1 = f2 = 0 with:

f1 = 2(τ + τ̃) + ψ + ψ̃ + ϕ+ ϕ̃+ 2Arg[Γ] − 2β + 4πn , f2 = |Γ|2 −
r2q
r2

. (C.9)

The Ω is built by summing the 2-forms locally orthonormal to each brane worldvolume [20]:

Ω =

∫
[

2Nf

(4π)4
sin χ̃(1 + cos χ̃) sin θ̃

]

(

δ(f1)δ(f2)df1 ∧ df2

)

dχ̃ dθ̃ dτ̃ dψ̃ dϕ̃ dβ , (C.10)

where the factor in the square brackets corresponds to the symmetry preserving normalized

density of the flavor branes. In principle, performing the integral (C.10) would be a chal-

lenge but, because of the preserved symmetries, we know that F(1) = Qf p(r)(dτ +ACP 2),

as in (5.2), and thus:

Ω = − 1

gs
dF(1) = −Nf

2π
[ 2p(r)JCP 2 + (∂rp(r)) dr ∧ (dτ +ACP 2))] . (C.11)
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Thus, the problem of solving the integral (C.10) is reduced to finding a single function p(r).

The easiest way to proceed is to evaluate from (C.10) the dr ∧ dτ component, at χ = π.

A straightforward analysis yields (see [20, 22, 23] for details of analogous computations in

different cases):

p(r) = 0, (r < rq),

p(r) =

(

1 −
r2q
r2

)2

, (r ≥ rq). (C.12)

As expected, p(r) vanishes at scales below the quark masses while it asymptotes to 1 in

the UV.

Up to here, we have written the family of embeddings (C.6) and the expression for the

corresponding charge density (C.11), (C.12) when the background is not backreacted and

the temperature vanishes. However, the computation is easily generalized to cases with

backreaction, finite temperature, or both. This is because the isometries and consequently

the integrals over the angles are exactly the same. One should just change slightly the

expression for f2 in (C.9) to be f2 = |Γ|2 − sin2 χwv(σ), where χwv(σ) parameterizes the

fiducial embedding and, as in the main text, we have used σ for the radial coordinate. The

argument that led to (C.12) is readily generalized to obtain (5.10).
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